Aerosol radiative impact on spectral solar flux at the surface, derived from principal plane sky measurements.

Y.J. Kaufman¹, D. Tanré², B. N. Holben³, S. Mattoo⁴, L.A. Remer¹, T. F. Eck⁵,

J. Vaughan⁶ and Bernadette Chatenet⁷

- NASA/GSFC code 913, Greenbelt MD 20771; Tel (301) 614-6189; Fax: (301) 614-6307;
 E-mail: kaufman@climate.gsfc.nasa.gov
- 2. Laboratoire d'Optique Atmospherique, CNRS, Université de Sciences et Techniques de Lille, Villeneuve d'Ascq, France.
- 3. NASA/GSFC code 923, Greenbelt MD 20771
- 4. SM&A corporation, 2600 Park Dr, Suite 100, Vienna, VA 22180
- Raytheon ITSS and NASA GSFC, code 923, Greenbelt, Maryland 20771, now at Goddard Earth Sciences and Technology Center, University of Maryland - Baltimore County, Baltimore MD
- 6. Dept. Civil & Env. Eng., Washington State Univ., Pullman WA, 99164-2910
- 7. Laboratoire Interuniversitaire des Systèmes Atmosphériques Universités Paris VII et Paris XII, CNRS, 94010 Créteil Cedex, France

ABSTRACT

Accurate measurements of the spectral solar flux reaching the surface in cloud free conditions are required to determine the aerosol radiative impact and to test aerosol models that are used to calculate radiative forcing of climate. Spectral flux measurements are hampered in many locations by persistent broken cloud fields. Here we develop a new technique to derive the diffuse solar spectral flux reaching the surface from principal plane measurements conducted in the last 6 years by the AErosol RObotic NETwork (AERONET). This 50-100 instrument global network measures the principal plane radiances in four spectral bands (0.44 -1.02 µm) approximately every hour every day. These instruments also measure the spectral optical thickness, and derive the aerosol size distribution and other properties from sky measurements. The advantage of the AERONET measurements is that collimated sky radiance is measured for each 1°x1° field of view. Clouds and cloud shadows are rejected before the total sky brightness is reconstructed and the flux is derived. The results compare favorably with

shadow-band measurements and with aerosol models. We study smoke aerosol in Brazil, Saharan dust in Cape Verde and urban/industrial pollution in Creteil near Paris, France and near Washington DC, USA. The spectral attenuation of total (diffuse+direct) solar flux reaching the surface is given by: $f = \exp(-a - b)$, where a is attenuation by an atmosphere with no aerosol and b is the aerosol attenuation coefficient. Remarkably, we find that for these sites except for the Washington DC site, the spectrally averaged value of b does not vary significantly from one aerosol type to another: $\{b\}=0.35\pm0.03$ (for solar zenith angle of 50°). The measured 24 hour average aerosol impact on the solar flux at the surface per unit optical thickness is F/=80 W/m² in these sites, almost independent of the aerosol type: smoke, dust or urban/industrial pollution. In Washington DC it is suspected, and demonstrated in a back of the envelope calculation, that the high amount of broken cloudiness and its correlation with the aerosol optical thickness is responsible for the apparent small aerosol forcing at the surface of F/=-50 W/m².

Introduction

Aerosol particles, e.g. desert dust, smoke from biomass burning and urban-industrial pollution (Kaufman et al., 1997a) can affect the radiation budget and the temperature field by changing the energy balance and distribution of solar radiation in the atmosphere. To understand this radiative forcing of climate, we need to determine the effect of aerosol on absorption and partition of spectral solar radiation between the Earth's surface and atmosphere. Aerosol increases atmospheric absorption of solar radiation and reflection of sunlight back to space. Both of these processes reduce the solar radiation reaching the Earth's surface. The reflection of radiation to space may counteract the greenhouse warming by cooling the Earth system (Charlson et al., 1992). The redistribution of radiation is expected to change the temperature profiles (Alpert et al., 1998), atmospheric stability and possibly cloud formation (Ackerman et al., 2000).

Satellite spectral measurements are used for remote sensing of the presence of aerosol, e.g. the effective aerosol optical thickness derived from AVHRR (Husar et al

1997) and the absorbing aerosol index derived from TOMS (Herman et al., 1997a). New efforts with present satellites (AVHRR, OCTS, POLDER) and new satellite missions (EOS-MODIS, EOS-MISR, ADEOS-GLI) work towards quantification of remote sensing of aerosol loading (Kaufman et al., 1997a, Tanré et al., 1997; Herman et al., 1997b; Nakajima et al., 1999; Higurashi and Nakajima, 1999). Spectral fluxes are also derived from the measured radiation field by the MODIS instrument on EOS-Terra (Tanré et al 1997, Kaufman et al., 1997b). These measurements will provide spectral fluxes at the top of the atmosphere and should be supplemented by measurements of the aerosol attenuation of the spectral solar flux reaching the Earth's surface (King, 1979, Bird and Riordan, 1986; Harrison et al., 1994, Eck et al; 1998).

The difference between the aerosol forcing at the surface and at the top of the atmosphere is the rate of aerosol heating of the lower atmosphere (Satheesh and Ramanathan, 2000). Substantial advancement has been made in regard to the broad band partition of solar radiation and measurements of the flux reaching the surface (Charlock, and Alberta 1996; Pinker, Laszlo, 1992; Christopher et al., 1998). But in order to resolve the present discrepancies between measured and calculated solar fluxes reaching the surface (Li et al. 1995, Arking, 1996; Ramanathan et al., 1995; Cess et al., 1995), spectral measurements of the partition of sunlight are required (e.g. Stephens and Tsay, 1990; Vogelmann et al., 1998; Pilewskie et al., 1998), see also review by Li et al. (1997). Spectral partition can be used to decide if the additional absorption is due to unresolved water vapor absorption in the near-IR (e.g. Belmiloud et al., 2000), or due to new molecular absorption not detected before, or wrong aerosol absorption model in a specific spectral region.

Here we introduce a new technique to derive the spectral diffuse radiation reaching the surface. This diffuse flux of scattered sunlight in the sky is derived from sky measurements in the principal plane. The method is suitable for the existing measurements by the 50-100 instrument strong global AErosol RObotic NETwork (AERONET) of sun/sky radiometers, that began operation in 1992 (Holben et al., 1998, http://aeronet.gsfc.nasa.gov:8080/). It is very different from present flux measurements, thus introducing "a second opinion" on the effect of aerosol on attenuation of downward spectral radiation, and an inexpensive method to expand the

coverage of the spectral flux measurements. We first describe the pros and cons of the new method and its application to several AERONET prime sites.

The remote sensing approach

Remote sensing of the effect of aerosol on the diffuse solar flux reaching the surface is illustrated here using the single scattering approximation for an atmosphere with only aerosol particles, with a scattering phase function P() and single scattering albedo O. Application of the method to AERONET data is done using rigorous radiative transfer calculations (Dave and Gazdag, 1968) for realistic atmosphere. In the single scattering approximation, for a non-reflective surface, the radiance reaching the surface is given by linearizing the single scattering expression of Hansen and Travis (1974):

$$L_{sky}(,,,) = F_{0}P(,)/4cos(,),$$
 (1)

where, F is the extraterrestrial solar spectral irradiance, the optical thickness and is the view zenith angle. The scattering angle—is related to the view zenith angle—, the solar zenith angle—, and the azimuth between them—by:

$$\cos(\) = \cos(\)\cos(\) + \sin(\)\sin(\)\cos(\) \tag{2}$$

Aerosol properties that determine sky brightness are the single scattering albedo, the phase function and the optical thickness. Though the optical thickness can be accurately derived from the measured attenuation of direct sun light (e.g. Shaw, 1979), the phase function and single scattering albedo are much more uncertain (Dubovik et al., 2000).

The diffuse flux reaching the surface is the integral of the sky radiance (eq. 1) on the downward hemisphere:

$$F_{sky} = L_{sky}(, ,) \sin() d d$$
 (3)

It is measured directly by the shadow band flux instruments, that measure the sky brightness by shadowing the sun (Bush and Valero, 1999). Though measurement of the flux is a direct determination of the diffuse solar radiation reaching the surface, it is sensitive to the ability of the instrument to sense equally photons arriving from all directions and requires a perfect horizon line. To derive the aerosol effect on the diffuse flux, it requires perfectly cloud free conditions. Therefore, the sampling may be biased towards measurements during high pressure systems that suppress cloud activity, but may have atypical aerosol and humidity conditions.

The AERONET autonomous robots record the sky brightness in the principal plane, a plan perpendicular to the surface that passes through the sun. The sky radiance in this plane, similar to eq. 1 can be described by:

$$L_{pp}(, ,) = F_{o} P_{pp}() /4cos(),$$
 (4)

Though the principal plane does not cover all the azimuthal angles of the sky it does cover all the scattering angles that determine all of the values of the phase function that affect the sky brightness. Fig. 1 demonstrates the distribution of the scattering angle. Note that any scattering angle in the 2-D sky can be found by interpolating two values in the 1-D principal plane. This full coverage of all the possible scattering angles is the basis for using the principal plane radiances to derive the full sky illumination. It assures that all the physical and chemical parameters that determine the optical properties of the aerosol and the sky radiance are included in the principal plane radiance. The following steps describe the method:

- Derive the aerosol optical thickness, a, from the AERONET measured attenuation of direct sunlight.
- Calculate an arbitrary sky illumination $L_a(\ ,\ ,\)$ assuming a given aerosol model e.g. a lognormal distribution of spherical homogenous aerosol particles with mean particle radius of R_g =0.06 μm , standard deviation of =0.6, single scattering albedo of =0.98, refractive index of (1.53-0.003i), and constant surface reflectance of =0.1.

In the single scattering approximation $L_a(\tau, \rho, \theta, \phi)$ is:

 $L_a(\theta,\theta_O,\phi) = F_o\omega_{oa}P_a(\Theta)\tau_a/4cos(\theta)$, where ω_{oa} and $P_a(\Theta)$ are the results of the arbitrary aerosol model and τ_a is the optical thickness derived from the solar measurements.

Convert the arbitrary sky radiance, $L_a(\ ,\ ,\)$, into the true sky radiance, $L_s(\ ,\ ,\)$, by scaling it with the radiance measured in the principal plane, $L_{pp-m}(\)$: $L_s(\ ,\ ,\ ,\)=L_a(\ ,\ ,\ ,\)\left[L_{pp-m}(\)/L_{pp-a}(\ ,\)\ \right] \eqno(5)$

where $L_{pp\text{-}a}(\)$ is the value of L_a in the principal plane, and $\$ is scattering angle for: , (see eq. 1).

In the single scattering approximation eq. 5 means:

$$L_s(\tau,\,\theta,\,\phi) = L_a(\tau,\,\theta,\,\phi) \big[L_{pp\text{-}m}(\Theta) / L_{pp\text{-}a}(\tau,\,\Theta) \big] =$$

$$= (F_o/4) \cdot \left[\omega_{oa} P_a(\theta, \phi) \tau_a/\cos(\theta_{sky})\right] \cdot \left[\omega_{om} P_m(\Theta) \tau_m/\cos(\theta_{pp})\right] / \left[\omega_{oa} P_a(\Theta) \tau_a/\cos(\theta_{pp})\right]$$
or:

$$L_{s}(\tau, \theta, \phi) = F_{o}\omega_{om}P_{m}(\theta, \phi)\tau_{m}/4\cos(\theta_{skv}), \tag{6}$$

Which is the "true" 2-D distribution of sky brightness. Here ω_{om} and $P_m(\theta, \phi)$ are the exact, though unknown quantities in the sky. Therefore, in the single scattering approximation the scaling removed any memory of the assumed aerosol properties. Multiple scattering can be expected to retain some of the memory for these properties.

• Integrate the measured radiance $L_s(\ ,\ ,\)$ to get the derived-measured diffuse sunlight flux reaching the surface:

$$F_{sky} = L_s(,,,,) \sin() d d \qquad (7)$$

The effect of multiple scattering on errors in the scaling (eq. 5) is proportional to the aerosol optical thickness. Therefore a sensitivity study is performed for optical thickness of 1.0, using rigorous radiative transfer model, to calculate the residual error. Smaller optical thicknesses are expected to generate proportionally smaller errors. Table 1 summarizes the results. Assuming that the errors are independent, the total error is expected to be smaller than 2.5%. This is substantially smaller than calibration errors of radiometers, or errors introduced in direct spectral flux measurements. Therefore the new method, of deriving the diffuse solar flux on the Earth surface from the measured principal plane sky radiation is very attractive. As in any method that derives properties of the atmosphere in cloud free conditions, cloud screening is a critical element. It is described in the next section.

Cloud Screening

Cloud screening is mainly based on the angular smoothness of the principal plane data. Using data collected from Cape Verde, off the west coast of Africa, during one month, we use the following cloud screening. Define the roughness parameter, $_{\rm i}$, for wavelength and scattering angle $_{\rm i}$ as:

$$_{i}$$
 = 100%·[L ($_{i+1}$) + L ($_{i-1}$) - 2L ($_{i}$)]/2L ($_{i}$) (8)

where L ($_i$) is the sky radiance in the principal plane for spectral channel and scattering angle $_i$. Data points are eliminated as cloudy if the average of the absolute smoothness parameter $_i$ is larger than 10% at 0.44 and 0.67 μm and 20% at 0.86 and 1.02 μm . Cloudy data are deselected for each spectral channel separately. The difference accounts for the much darker sky in the near IR from that in the visible. The thresholds were determined empirically for dust (Fig. 2) and found appropriate for the other aerosol types. Fig. 2 demonstrates this cloud screening. Here the fluxes determined from the AERONET measurements are compared with a reference dust model with a simplified one log-normal size distribution with particle effective radius 1.5 μm . The effect of clouds in enhancing the fluxes determined from the AERONET data is evident on the left side of the figure. The cloud screening procedure eliminated most of the cloudy cases.

Application

Are the fluxes derived from the AERONET principal plane measurements in agreement with direct flux measurements and with the aerosol physical models? The next several figures address this issue for several aerosol types: smoke, dust and urban/industrial pollution. Fig. 3 shows a comparison between two measurements and one estimate of the spectral diffuse solar flux reaching the surface in Cuiaba Brazil, during the Smoke Cloud And Radiation (SCAR-B) experiment in Brazil, in 1995:

- shadow band measurements (open symbols),
- smoke aerosol model (Remer et al., 1998 full symbols) and
- fluxes derived from the AERONET data (abscissa).

For the range of aerosol optical thicknesses of 0.1 to 0.6 (dashed vertical lines in the figure) for which the smoke aerosol model was developed, there is an excellent agreement with the AERONET data. The shadow band fluxes are systematically lower by F/Fo=0.06 from the AERONET measurements. While the correlation between the flux derived from AERONET data and the flux measured by the shadow-band is high (r=0.90), the correlation of the AERONET data with the model is much higher (r=0.98). This is mainly due to the much better ability for cloud screening in the AERONET data than in the shadow-band. While shadow band measures the whole sky in one shot,

AERONET measures each 1°x1° of sky brightness at a time in the principal plane, and the software eliminates points that are much brighter (cloud) or darker (shadow) than the adjacent points.

We consider it a partial experimental confirmation (for optical thickness<0.6) of the method to derive the fluxes from the AERONET principal plane measurements, since the smoke aerosol model was heavily verified against *in situ* and radiation measurements (Remer et al., 1998). Remer et al. model is based also on AERONET measurements in Brazil, but in a different time period and on analysis of the almucantar measurements.

A very interesting behavior of the downward diffuse solar flux is shown in Fig. 4. As the aerosol optical thickness increases, it can be expected that the diffuse solar flux to the ground will first increase, reaching a maximum and then decrease. For optical thicknesses less than 1.0, atmospheric scattering transfers photons from the direct solar beam to the diffuse flux, giving the sky its brightness and color. For higher optical thickness, aerosol absorption and backscatering to space decreases the already large diffuse flux, eventually reaching darkness experienced under a heavy dust storm or smoke from a wild fire. The optical thickness for which the sky brightness reaches the maximum value is determined by the aerosol single scattering albedo and backscatering coefficient (Kaufman and Holben, 1996). The data indicate higher diffuse sunlight than the model, mainly for high optical thickness. This may be due to higher single scattering albedo, or smaller backscattering coefficient. Sky heterogeneity, discussed later may also contribute to this difference.

The main purpose of measuring the downward fluxes is to estimate the aerosol radiative impact at the surface. When combined with satellite estimate of radiative impact at the top of the atmosphere, a full impact on the radiative budget can be achieved. Aerosol backscattering to space reduces the fraction of sunlight absorbed in the atmosphere and by the surface. Therefore increase in anthropogenic aerosol can extract a significant negative forcing at the top and bottom of the atmosphere. Aerosol decreases the absorption of sunlight by the surface but increases the absorption by the atmosphere, thus an increase in the aerosol absorption is a negative forcing at the surface but positive at the top of the atmosphere. The aerosol spectral radiative impact at the surface is proportional to the fraction of spectral sunlight reaching the surface that is derived as the sum of the direct and diffuse fluxes normalized by the solar

spectral flux at the top of the atmosphere $(F_0\mu_0)$. This fraction, f, given by:

$$f = F_{skv} / F_o \mu_o + exp(-/\mu_o)$$
 (9)

where the first element on the right is the diffuse component of sunlight reaching the surface and the second term is the direct component. The results, for four spectral channels and four locations are given in Fig. 5. Dust in Cape Verde attenuates the solar radiation slightly less than smoke in Brazil (Cuiaba and Alta Floresta), for the same optical thickness. Urban/industrial pollution aerosol was measured on the roof in Goddard Space Flight Center (GSFC) in Maryland near Washington DC, and in Creteil, France near Paris. Since the single scattering albedo is higher for urban/industrial pollution (Hegg et al., 1997) than for smoke (Kaufman et al., 1998), it is expected to see a higher fraction of sunlight reaching the surface for a given optical thickness (see model results in table 2). While the results for Creteil France behave according to this rational, aerosol attenuation of the total solar flux in GSFC is very small, with largest discrepancy at 0.44 and 0.86 µm channels. From the scatter of the data it is evident that at least some of this trend is due to sky heterogeneity, e.g. the presence of clouds outside the principal plane that enhance its illumination or variation in the relative humidity. Sky heterogeneity can affect the fraction of sunlight reaching the surface for the same aerosol average loading, similar to the effects with broken clouds (Marshak et al., 1997). The experimental data are approximated by an exponential function:

$$f = \exp(-a - b), \tag{10}$$

where a is the Rayleigh attenuation, and b is the aerosol attenuation. Best fit values of b are given in Table 2. The measured attenuation of spectral sunlight by the aerosol is smaller by 15-30% from the theoretical models. However in GSFC the attenuation is less than half of the model value.

The data in GSFC deviate significantly from the urban/industrial model of Remer et al (1998b), therefore require further analysis. To decide if the discrepancy between the model and the AERONET data can be due to residual, unresolved clouds, the spectral dependence of the sky fluxes, given by the sky Ångström exponent, $_{\rm L}$: $_{\rm L}$ =ln(F₁/F₂)/ln($_{\rm 1}$ / $_{\rm 2}$) is shown in Fig. 6. For AERONET and the model we use: $_{\rm 1}$ =0.44, $_{\rm 2}$ =1.02 µm. A very good agreement is found between the values of the sky

(11)

Ångström exponent for AERONET and the model. The Ångström exponent should be zero, or even negative for clouds. So it is not possible that the differences observed in Fig. 5 are due to unresolved clouds in the field of view. We ruled out the effect of uncertainty in the real refractive index that is strongly affected by the inclusion of liquid water in high humidities. Note that the attenuation of solar radiation reaching the surface in Creteil France, show much better agreement with the urban/industrial model (Fig. 7) than the GSFC data. The main difference in the data from Creteil and GSFC is the presence of broken cloudiness in GSFC that caused a rejection of 55% of the data vs. 10% in Creteil. The GSFC data are further analyzed in the discussion section.

Aerosol radiative impact at the surface

 $F(_{O}) = F_{O} T (_{O}) \exp[-b (0.66/_{O}) \cos(50^{\circ})/\cos(_{O})]$

The measurements of attenuation of the solar radiation reaching the surface by aerosol, were given in Fig. 5 and Table 2. Here they are used to calculate the radiative impact of aerosol at the surface. Calculations of the attenuation of the entire solar flux by the aerosol are performed assuming that the spectral dependence of the optical thickness can be described by the Ångström exponent, : = $_{0.6}$ π (0.67/). It is assumed that the exponent b is proportional to the path of sunlight through the atmosphere: $1/\cos(_{0}$), where $_{0}$ is the solar zenith angle. b is measured for solar zenith angle of 50°. Therefore the impact at the surface is given by the integral:

Where T is the spectral transmission through the atmosphere due to gaseous absorption. We did not detect a regular variation of b as a function of the wavelength. Therefore we used the spectral average value of b for each site for the entire solar spectrum.

The results are summarized in Table 3, for the spectrally averaged values of the exponent b . Both the model value of b and the measured values are used in the calculations. The calculations were performed for solar zenith angles every 10°. Assuming equal probability of all solar zenith angles, the table also averages the aerosol

radiative impact over the 24 hours. The results are plotted in Fig. 7 as a function of the spectrally average value of b . In all cases the measured flux attenuation is smaller than in the model, but the difference is striking for measurements of Urban/industrial pollution in GSFC. The radiative impact by the aerosol due to the attenuation of total sun light for unit optical thickness as measured (or modeled) is -81 (-105) W/m² for smoke -80 (-90) W/m² for dust -80 (-98) W/m² for urban/industrial aerosol in France but only -48 (-98) W/m² for urban/industrial aerosol in Maryland, USA. Note the large difference from the modeled results for the USA site.

Discussion an conclusions

A new technique was demonstrated to derive the solar diffuse spectral flux reaching the surface from principal plane radiances measured by the AERONET sun/sky radiometers. While this is not a direct measurement of the flux, the flux can be derived from the principal plane radiation field within 2.5%. This is in addition to the calibration error estimated to be around 5%. The advantage of the technique is the use of an existing network with 6 years of data from 50-100 instruments, better cloud screening that allows the derivation of the aerosol effect also in the presence of some cloudiness and smaller sensitivity to horizon uniformity and instrumental angular response. Application of the technique to several sites show some interesting differences from aerosol models.

While our models predict that the attenuation of total sunlight reaching the surface should be between -90 and -105 W/m², with the lowest attenuation for dust and highest for smoke, the measurements indicate -80 W/m² in all the cases except for GSFC near Washington DC. The fact that observations of varying aerosol type give the same attenuation is surprising. Apparently the differences between these aerosol types in single scattering albedo cancels out the differences in particle effective radius. For example, smoke -due to its small particle size (effective radius of 0.14 μ m – Remer et al 1998), does not interact effectively with solar radiation for wavelengths above 1 μ m, while dust interacts with the whole solar spectrum (effective radius of 1-3 μ m – Tanré et al. 2000). However smoke single scattering albedo is 0.85 to 0.90 (Kaufman et al., 1998), while dust single scattering albedo is close to 1.0 for the solar spectrum above 0.55 μ m (Tanré et al., 2000). The smaller dust absorption reduces its effect on the solar radiation

near the surface. Apparently these two processes cancel each other in the present case. The value of -80 W/m² is similar also to the forcing measured in the INDOEX experiment (Satheesh and Ramanathan, 2000). The higher modeled radiative forcing at the surface (Table 3) is the result of the higher attenuation coefficients (Table 2). These theoretical attenuation coefficients are uncertain. An uncertainty in the single scattering albedo of $=\pm0.05$ corresponds to an uncertainty in the attenuation coefficient $b=\pm0.04$ for solar zenith angle of 50° or $\pm7w/m^{2}$ in the daily flux at the surface (based on the equation in Fig. 7). Uncertainty in the particle size and dust nonsphericity will add to these uncertainties. In the case of smoke (see Figs. 3 and 4) the model underestimates the diffuse flux to the surface for high optical thickness. This is expected due to the increase of the smoke single scattering albedo and particle size as a function of the smoke optical thickness (Kaufman et al., 1998).

In GSFC we measured much lower attenuation than expected from the model calculations and much smaller than the attenuation in Creteil near Paris. We attribute this difference to the presence of broken clouds in the GSFC and the entire NorthEast US in the summer, with cloud fraction that is correlated with the presence of the aerosol (or optical thickness). These clouds, although eliminated from the direct field of view, can illuminate the principal plane from the side, and trap sunlight between the cloud layer and the surface, thereby increasing the solar flux reaching the surface. Monte Carlo calculations for similar cloud effect on the brightness of cloud-free region observed from space was presented by Kobayashi et al., (2000). The cloud fraction increases from 0.05 for low optical thickness to 0.2 for aerosol optical thickness of 0.6 at 0.67 µm (Fig. 8). We simulated the scattering among the aerosol layer, the clouds and the surface in the presence of variation in the cloud fraction, using a simple back of the envelop model (see Appendix) that models the effect of the change in the cloud fraction as a function of the aerosol optical thickness. Clouds scattered direct sunlight and sunlight reflected from the surface. The extra photons that are scattered from the clouds illuminated the aerosol and molecular column in the cloud free region, and contributed the extra energy that compensated partially for the aerosol attenuation. The increase in the cloud fraction and the cloud effect, compensates partially for the reduction in the irradiance of the surface by the increase in aerosol backscattering to space and aerosol absorption. The results are demonstrated in Fig. 9 and compared with the

measurements. The cloud effect reduced the aerosol attenuation coefficient on average by factor of 2. This lower value is similar to the present measurements in GSFC and represents an interesting interaction among change in haziness, correlated change in fraction of broken cloudiness and the radiation field, that we did not find in other locations.

In calculating the integral on the solar spectrum we assumed that we can use spectrally constant values of the Ångström exponent—and of the aerosol attenuation coefficient b. Spectral measurements of the sky radiance in a wider spectral range are needed to improve beyond this assumption. However in most case the aerosol forcing for wavelengths >1 μm is small and the assumptions are not expected to introduce a significant errors.

Appendix – <u>Back of the envelope calculations of the effect of a broken cloud field on the</u> surface irradiance.

<u>Cloud free:</u> The fraction of sunlight reaching the surface in cloud free atmosphere,

 $F_{cloud-free}$, in a given spectral region can be approximated by:

$$F_{cloud-free} = F_{dirct} + F_{diffuse} + F_{multi-ref-aer}$$
(A1)

 F_{dirct} is the direct solar radiation reaching the surface:

$$F_{dirct} = exp(-/\mu_0)$$

where $\,$ is the total optical thickness and μ_o is cosine of the solar zenith angle,

 $\boldsymbol{F}_{\mbox{diffuse}}$ – the diffuse radiation reaching the surface:

$$F_{diffuse} = forward-total(1-F_{direct})$$

Where $_{\rm forward\text{-}total}$ =($_{\rm forward\text{-}aerosol}$ $_{\rm aerosol}$ +0.5 $_{\rm Rayleigh}$)/, $_{\rm forward\text{-}aerosol}$ is the fraction of photons that interact with the aerosol and are scattered forward, $_{\rm aerosol}$ is the aerosol optical thickness, 0.5 is the fraction of photons scattered forward by molecular Rayleigh scattering and $_{\rm Rayleigh}$ is their optical thickness.

 $F_{multi\text{-ref}}\,$ is multiple scattering between the surface and atmosphere

$$F_{multi-ref} = (F_{dirct} + F_{diffuse}) sR_{atm}$$

Where $R_{atm} = \frac{back-total}{back}$ /2

Adding clouds: The fraction of sunlight reaching the surface in a cloud free spot, in the presence of broken cloudiness with cloud fraction f_c , cloud transmission t_c and cloud reflection R_c is F_{+cloud} , approximated by:

$$F_{+cloud} = F_{cloud-free} + F_{cloud-trans} + F_{cloud-ref} + F_{multi-ref}$$
 (A2)

Here assume that the diffuse radiation in the sunny pixel is not affected by the obscuration by clouds of part of the sky due to the strong forward structure of the diffuse radiation, and therefore the cloud effect is only in adding illumination.

 $F_{cloud\mbox{-}trans}$ - diffuse light transmitted through the cloud layer and scattered in the atmosphere to the sensor:

$$F_{cloud-trans} = f_c t_c (F_{direct} + F_{diffuse})$$
 forward-total

 $F_{cloud-ref}$ – light backscattered by the atmosphere (R_{atm}) and reflected downward by the cloud layer (R_c):

$$F_{cloud-ref} = R_{atm} f_c (1-f_c) R_c$$

Where $_{back-total}$ is similar to $_{back-total}$ replacing the aerosol forward scattering fraction with the backscattering.

 $F_{multi-ref}$ light reflected by the surface ($_{s}$) and reflected downward by the cloud layer:

$$F_{multi-ref} = (T_{cloud-free} + f_c t_c) s[R_c f_c + R_{atm}(1 - f_c)] - F_{multi-ref}$$

REFERENCES

- Ackerman A.S., Toon O.B., Stevens D.E., Heymsfield A.J., Ramanathan V., Welton E.J. Science, **288**, 1042-1047, 2000
- Alpert, P., Y. J. Kaufman, Y. Shay-El, D. Tanre, A. da Silva, S. Schubert, Y. H. Joseph, 1998; Quantification of Dust-Forced heating of the Lower Troposphere. *Nature*, **395**, 367-370.
- Arking, A., Absorption of solar energy in the atmosphere: Discrepancy between model and observations, *Science*, **273**, 779-782, 1996.
- Belmiloud D, Schermaul R, Smith KM, Zobov NF, Brault JW, Learner RCM, Newnham DA, Tennyson J, New studies of the visible and near-infrared absorption by water vapour and some problems with the HITRAN database, Geoph. Res. Let., 27, 3703-3706, 2000
- Bird, R.E. and C. Riordan, 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth's surface for cloudless atmospheres. *J. Climate Appl. Meteor.*, **25**: 87-97.
- Bush BC, Valero FPJ, Comparison of ARESE clear sky surface radiation measurements, J. Quant. Spectros. & Rad. Trans., 61, 249-264, 1999 Cess R.D., Zhang M.H., Minnis P., Corsetti L., Dutton E.G., Forgan BW, et al., Absorption Of Solar-Radiation By Clouds Observations Versus Models, *Science*, **267**, 496-499, 1995.
- Charlock, T.P., Alberta T.L.: The CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data *Bull. Amer. Meteor. Soc.* 77: 2673-2683. 1996
- Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen and D.J. Hofman, 1992, Climate forcing of anthropogenic aerosols, *Science*, **255**, 423-430.
- Christopher S. A., Wang M, Berendes T.A., Welch R.M., Yang S.K, 1998, The 1985 biomass burning season in South America: Satellite remote sensing of fires, smoke, and regional radiative energy budgets J. Appl. Meteor. 37, 661-678.

- Dave, J. V. and J. Gazdag, 1970: "A modified Fourier transform method for multiple scattering calculations in a plane parallel Mie atmosphere", *Appl. Opt.*, **9**, 1457-1466.
- Dubovik, O., A. Smirnov, B.N. Holben, M.D. King, Y. J. Kaufman, T.F. Eck and I. Slutsker, Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements, *J. Geophys. Res.* 105, 9791-9806, 2000.
- Eck, T.F., Holben B.N., Slutsker I., Setzer A.: Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia, *J. Geophys. Res.*, **103**: 31865-31878, 1998.
- Hansen, J.E. and Travis L. D., Light scattering in planetary atmospheres, *Space Sci. Rev.*, **16**, 527-610, 1974.
- Harrison, L and J.Michalsky and J. Berndt, 1994. Automatic multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements, *Appl. Opt.*, **33**, 5118-5125.
- Hegg D. A., Livingston J, Hobbs PV, Novakov T, Russell P, Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States, , J. Geophys. Res., 102, 25293-25303, 1997.
- Herman, J. R., P. K. Barthia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, Global distribution of UV absorbing aerosol from Nimbus 7 TOMS data, *J. Geophys. Res.*, **102**, 16,911-16,922, 1997a.
- Herman, M., J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, and D. Tanré, Remote sensing of aerosol over land surfaces including polarization measurements and application to polder measurements, *J. Geophys. Res.*, **102**, 17,039-17,050, 1997b.
- Higurashi, A., and T. Nakajima, Development of two channel aerosol retrieval algorithm on a global scale using NOAA AVHRR, *J. Atmos. Sci.*, **56**, 924-941, 1999.
- Holben, B. N., T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak and A. Smirnov, AERONET-A federated instrument network and data archive for aerosol characterization, Rem. Sens. Environ., 66, 1-16, 1998.
- Husar, R. B., J. Prospero, and L. L. Stowe. and L. L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA-AVHRR aerosol

- optical thickness operational product, *J. Geophys. Res.*, **102**, **16,889-16,909**, **1997**.
- Kaufman, Y. J., P. V. Hobbs, V. W. J. H. Kirchhoff, P. Artaxo, L. A. Remer, B. N. Holben, M. D. King, E. M. Prins, D. E. Ward, K. M. Longo, L. F. Mattos, C. A. Noble, J.K.D. Spinhirne, Q. Ji, A. M. Thompson, J. F. Gleason, S. A. Christopher, and S.-C. Tsay, 1998: The Smoke, Clouds and Radiation Experiment in Brazil (SCAR-B) J. Geophys. Res., special issue on SCAR-B., 103, 31,783-31,808.
- Kaufman, Y. J. and B. N. Holben, Hemispherical Backscattering By Biomass Burning And Sulfate Particles Derived From Sky Measurements. *J. Geophys. Res.*, **101**, 19433-19445, 1996.
- Kaufman, Y. J., D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H.
 Grassl, B. M. Herman, M. D. King, and P. M. Teillet, 1997a: Passive
 Remote Sensing of Tropospheric Aerosol and Atmospheric Correction. J.
 Geophys. Res.,, 102, 16815-16830.
- Kaufman, Y. J., D. Tanré, L. Remer, E. Vermote, A. Chu, and B. N. Holben, Remote sensing of tropospheric aerosol from EOS-MODIS over the land using dark targets and dynamic aerosol models, J. Geophys. Res., 102, 17,051-17,067, 1997b.
- King, M.D., Determination of ground albedo and the index of absorption of atmospheric particulates by remote sensing. Part II Application, *J. Atmos. Sci.*, **36**, 1072-1083, 1979.
- Kobayashi T, Masuda K, Sasaki M, Mueller J, Monte Carlo simulations of enhanced visible radiance in clear-air satellite fields of view near clouds, J. Geophys. Res 105, 26569-26576, 2000
- Li, Z., H.W. Barker and L. Moreau, The variable effect of clouds on atmospheric absorption of solar radiation, *Nature*, **376**, **486**-490, **1995**.
- Li, Z., L. Moreau, A. Arking, On solar energy disposition, A perspective from observation and modeling, Bull. Amer. Meteor. Soc., 78, 53-70, 1997.
- Marshak A., Davis A., Wiscombe W., Cahalan R., Inhomogeneity effects on cloud shortwave absorption measurements: Two-aircraft J. Geophys. Res., **102**, 16619-16637, 1997.

- Nakajima T., Higurashi A., Aoki K., Endoh T., Fukushima H., Toratani N., Mitomi Y., Mitchell B.G., Frouin R., Early phase analysis of OCTS radiance data for aerosol remote sensing, *IEEE Trans. on Geosci. and Rem. Sens.* **37**, 1575-1585, 1999.
- Pilewskie P., Goetz A.F.H., Beal D.A., Bergstrom R.W., Mariani P., Observations of the spectral distribution of solar irradiance at the ground during SUCCESS, *Geoph. Res. Let.* **25**, 1141-1144, 1998.
- Pinker R.T., Laszlo I., Modeling Surface Solar Irradiance for Satellite Applications On A Global Scale, *J. Applied Meteor.* **31**, 194-211, 1992.
- Ramanathan V., Subasilar B., Zhang G.J., Conant W., Cess R.D., Kiehl J.T., Grassl H., Shi L., Warm Pool Heat-Budget And Shortwave Cloud Forcing A Missing Physics, *Science*, **267**, 499-503, 1995.
- Remer, L. A., S. Gassó, D. Hegg, Y. J. Kaufman, and B. N. Holben, 1997: Urban/industrial aerosol: ground based sun/sky radiometer and airborne in situ measurements J. Geophys. Res., 102, 16849-16859.
- Remer, L. A., Y. J. Kaufman, B. N. Holben, A. M. Thompson and D. McNamara, Tropical biomass burning smoke aerosol size distribution model. J. Geophys. Res.. 103, 31,879-31,892, 1998a.
- Remer, L. A. and Y. J. Kaufman, Dynamical aerosol model: Urban/industrial aerosol., J. Geophys. Res., 103, 13,859-13,871, 1998b.
- Satheesh, S.K. and V. Ramanathan, Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface, Nature, **405**, 60-63, 2000.
- Shaw, G.E., 1979: 'Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra', *Appl. Opt.* **18**, 988-993.
- Stephens, G.L., Tsay S.-C. On the Cloud Absorption Anomaly, Quart. J. Royal Meteor. Soc. 116, 671-704, 1990
- Tanré, D., Y. J. Kaufman, M. Herman, and S. Mattoo, Remote sensing of aerosol over oceans from EOS-MODIS, *J. Geophys. Res.*, **102**, 16,971-16,988, 1997.
- Tanre, D., Y. J. Kaufman, B.N. Holben, B. Chatenet, A. Karnieli, F. Lavenu, L. Blarel, O. Dubovik, L.A. Remer, A. Smirno: Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum, J. Geophys. Res., dust special issue accepted, 2000.

Vogelmann A.M., Ramanathan V., Conant W.C., Hunter W.E., Observational constraints on non-Lorentzian continuum effects in the near-infrared solar spectrum using ARM ARESE data, J. Quant. Spectr. & Rard. Trans. **60**, 231-246, 1998.

Table 1: Summary of the accuracy in derivation of the diffuse solar flux reaching the surface from the AERONET radiances measured in the principal plane. The errors are calculated by assuming that the atmospheric aerosol has a lognormal distribution of spherical homogenous aerosol particles with mean particle radius, R_g =0.06, standard deviation, =0.6, single scattering albedo, =0.98, refractive index, 1.53-0.003i, optical thickness of 1.0 and surface reflectance, =0.1. The atmosphere is simulated by changing the assumed model to R_g =1.0, =0.85, =0.2 one step at a time, and all steps combined. =30°, =0.64 μ m.

Change in parameter:	Error %
Error in particle size, $R_g = 0.06 ==> 1.0$	1.5
Error in surface reflectance, $s = 0.1 = > 0.2$	0.7
Error in single scattering albedo, $= 0.98 ==> 0.85$	0.7
Error in aerosol optical thickness, =0.05	0.7
Error due to aerosol height $H=1 \rightarrow 3$ km for = 0.85	0.3
Std error	2.4
Combined error:	
$=-0.05$, $=0.1$, $R_g=0.94$, $=-0.13$	0.9

Table 2: Attenuation of sunlight reaching the Earth surface for solar zenith angle of 50° . The fraction of solar radiation reaching the surface is fitted with an exponential function: f =exp(-a -b), where a is attenuation by aerosol free atmosphere: $a_{0.44}$ =0.17; $a_{0.67}$ =0.033; $a_{0.87}$ =0.009; $a_{1.02}$ =0.003) and b is the aerosol attenuation given in the table. Results are given for the attenuation functions derived from the AERONET principal plane radiances, and compared with dust (Tanre et al, 2000), smoke (Remer et al., 1998a) and urban/industrial models (Remer et al (1998b). The spectrally averaged {b} and the Ångström exponent, , average and standard deviations are also shown.

Models:	Smoke		Measurements						
	Model	Cuiaba,	Brazil	Alta Floresta					
Wavelength	b	Correlation	b	Correlation	b				
0.44	0.5	4 0.92	0.35	0.97	0.37				
0.66	0.5	7 0.89	0.35	0.95	0.39				
0.86	0.5	1 0.86	0.38	0.92	0.43				
1.02	0.4	6 0.79	0.34	0.85	0.35				
Average $\{b_{\lambda}\}$	0.52	2	0.36		0.38				
α (aver., std)	1.8	3	1.6±0.4		1.2±0.1				
	Dust								
	Model	Capo Verd	le, Africa						
Wavelength	b	Correlation	b						
0.44	0.5	1 0.38	0.28						
0.67	0.	4	0.39						
0.86	0.2	9 0.66	0.34						
1.02	0.2	7 0.54	0.28						
Average $\{b_{\lambda}\}$	0.37	7	0.32						
α (aver., std)	0.5	j.	0.4±0.3						
	Urban								
	Aerosol	Certiel, France		GSFC, Maryland USA					
Wavelength	b	Correlation	b	Correlation	b				
0.44	0.2	8 0.71	0.32	0.48	0.062				
0.67	0.5	4 0.8	0.42	0.78	0.3				
0.86	0.	5 0.79	0.26	0.48	0.16				
1.02	0.5	0.73	0.33	0.48	0.24				
Average $\{b_{\lambda}\}$	0.4	16	0.33		0.19				
α (aver., std)	1.	8	1.4±0.2		1.7±0.2				

Table 3: The attenuation of solar flux reaching the surface by the aerosol for optical thickness of 1.0 at 0.67 μm . The solar radiation reaching the surface was modeled using the tropical atmosphere gaseous attenuation. The attenuation of solar radiation is expressed in units of Watt/m². The results are give for the full solar spectrum. For each model or measurement data set the Ångström exponent, , and the attenuation coefficient b are given.

Parameter	Smol	ке	Dus	t	Urban/industrial		
	model m	easured	model measured		model measured/GSFC		
	1.8	1.8	0.5	0.5	1.8	1.8	
b	0.52	0.37	0.37	0.32	0.46	0.19	
solar zenith angle							
O°	259	194	216	189	233	106	
10°	259	194	216	189	233	106	
20°	258	194	216	189	233	108	
30°	257	195	216	189	232	109	
40°	253	194	214	189	289	114	
50°	245	190	210	188	223	116	
60°	230	183	201	181	211	114	
70°	199	165	181	165	185	108	
80°	134	119	130	122	128	87	
90°	0	0	0	0	0	Ο	
24 hour average	e 105	81	90	80	98	48	

/	0	20	40	60	80	100	120	140	160	180
О	60	60	60	60	60	60	60	60	60	60
10	50	51	53_	55	59	62	65	68	69	70
20	40	42	46	52	59	65	71	76	79	80
30	30	33	40	49	59	69	77	84	88	90
40	20	25	36	49	61	73	84	92	98	100
50	10	19	34	49	64	78	91	101	108	110
60	O	17	34	51	68	83	97	109	117	120
70	10	21	37	55	72	88	104	117	126	130
80	20	27	42	59	76	93	110	124	136	140
90	30	36	48	64	81	99	116	132	144	150

Fig. 1. Distribution of the scattering angle across the sky as a function of the view zenith angle () and the azimuth (). Any scattering angle in the sky (e.g. the value of 52° in the box) can be found by interpolation on two adjacent values in the principal plane (e.g. the double sided box).

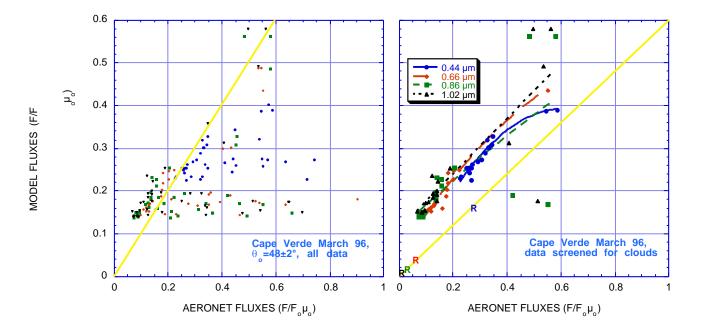


Fig. 2: Effect of cloud screening on the results from Cape Verde, west of the African continent. Left panel: Scatter plot of model fluxes for a simplified one log-normal size distribution with particle effective radius 1.5 μm , refractive index n_r =1.53-0.003 for 0.44 μm and 1.53-0.0 for wavelength larger than 0.6 μm , vs. fluxes derived from the AERONET algorithm for all the data. The right panel show the same results, but after deselecting data with roughness parameter $_i > 10\%$ at 0.44 and 0.67 μm and $_i > 20\%$ at 0.86 and 1.02 μm . The Rayleigh value is shown by the letter "R" in the proper color. The measured fluxes are normalized by F/Fo, where Fo is the solar flux in the spectral channel. Only couple of points, evidently contaminated by clouds, were not deselected.

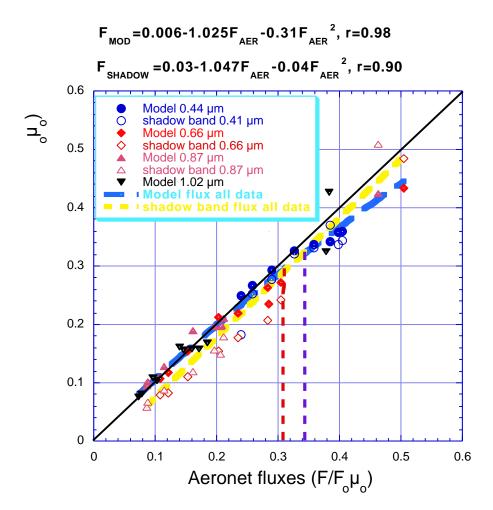


Fig. 3: Comparison between AERONET fluxes from Cuiaba, 1995, and two estimates of the spectral flux at the surface: (1) Shadow band measurements (empty symbols), (2) prediction of the fluxes by the smoke aerosol model (full symbol) of Remer et al., (1998a). Solar zenith angle is 50° . For the range of aerosol optical thicknesses of =0.1 to 0.6 for which the smoke aerosol model was developed, there is an excellent agreement with the AERONET data. The AERONET flux that corresponds to =0.6 is shown by the dashed lines, for the red and blue channels respectively. Note that the shadow band first wavelength is shorter than the AERONET. The shadow band fluxes are systematically lower by $F(\ /F_0)=0.06$ from the AERONET measurements.

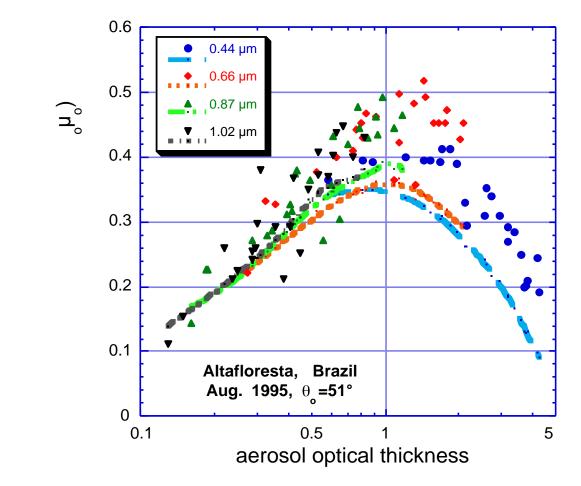


Fig. 4: Solar diffuse fluxes reaching the Earth surface at Alta Floresta, Brazil, as a function of the smoke optical thickness. Data are for the 1995 SCAR-B experiment. The symbols stand for the AERONET data and the lines for the smoke model of Remer et al., (1998a).

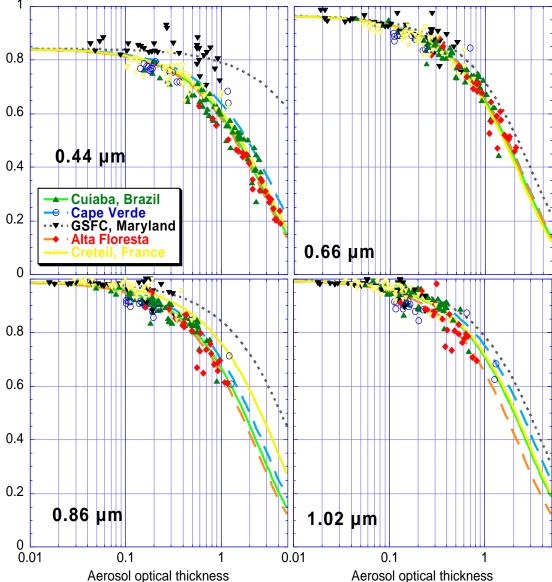


Fig. 5: Attenuation of solar radiation reaching the Earth surface. Results are given for the four AERONET spectral bands, for three locations as a function of the aerosol optical thickness. The solar zenith angle is around 50° . Note that dust in Cape Verde attenuates the solar radiation less than smoke in Brazil (Cuiaba and Alta Floresta). The numerical fits of the data to a transmission function, $f=\exp(-a-b\tau)$, are given in Table 2. Only **b** is allowed to value, **a** is fixed based on the Rayleigh scattering value.

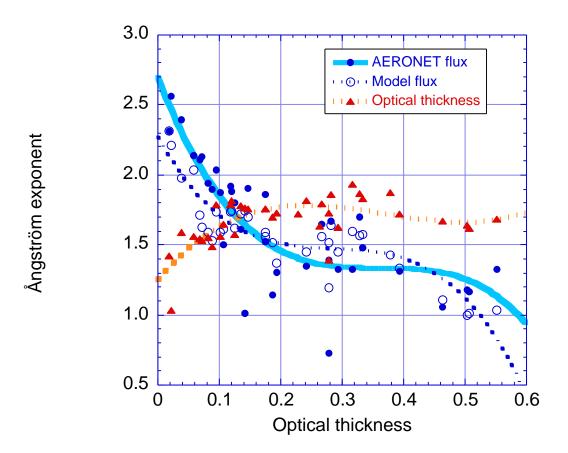


Fig. 6: The Ångström exponent, $_{F}$, describing the spectral properties of the sky flux as measured by AERONET and predicted by the urban/industrial model. It is defined as: $=\ln(F_{1}/F_{2})/\ln(_{1}/_{2}).$ For AERONET and the model $_{1}=0.44,_{2}=1.02~\mu m.$ The Ångström exponent derived from the optical thickness measurements, , is also shown.

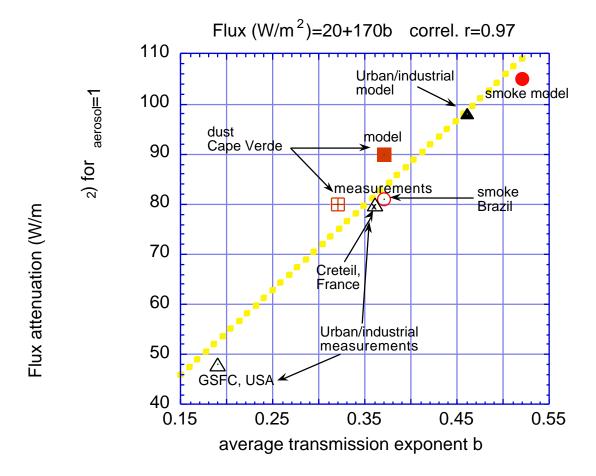


Fig. 7: Summary of the aerosol effect on flux attenuation at the surface, as function of the exponent given in table 2. The model results are given by full symbols and the measurements by the empty symbols. Note that the Ångström exponent, , is different for the different models. =1.8 for smoke and urban pollution and 0.5 for dust. The dashed line is the square fit to all the points. In all cases the measured flux attenuation is smaller than in the model, but the difference is striking for measurements of Urban/industrial pollution in GSFC.

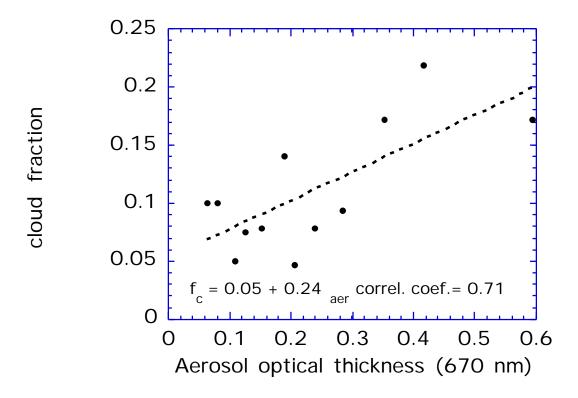


Fig. 8: Variation of the broken cloud fraction with the aerosol optical thickness in the Northeast US. Cloud data are from 4 locations Virginia to New Jersey. The optical thickness measurements were located 1-60 km from the cloud observations. The data were first sorted by increasing optical thickness and then averaged in groups of 8. The cloud fraction is correlated here with the aerosol optical thickness, varying from 0.05 for no aerosol to 0.2 for aerosol optical thickness of 0.6 at 670 nm. The measurements were collected during the SCAR-A experiment in 1993 (Remer et al., 1997).

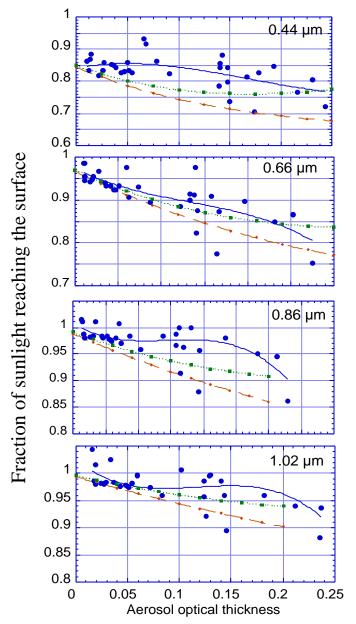


Fig. 9: Demonstration of the effect of broken cloudiness on the downward flux at the surface. Blue points are AERONET measurements of the fraction of sunlight reaching the surface as a function of the aerosol optical thickness. Red and green lines are the calculations respectively without and with a change in cloud fraction from ranging from 0.05 to 0.2 associated with a corresponding change in the aerosol optical thickness (Fig. 8). Clouds are considered to be located in one layer with cloud diffuse transmission of $t_c \! = \! 0.7$ and Lambertian reflectance of $R_c \! = \! 0.3$. The four panels are for wavelengths of 0.44 μm at the top to 1.02 μm at the bottom. The cloud effect – green line explains to a large degree the lack of decrease in the fraction of photons reaching the surface with an increase in the aerosol optical thickness.